LN32240T024SA3098-TR

2.4 inch, 240×320, TN screen with normal viewing angle, air bonding RTP

Disclaimer: The product design is subject to alternation and improvement without prior notice.

DWIN Technology 1 www.dwin-global.com

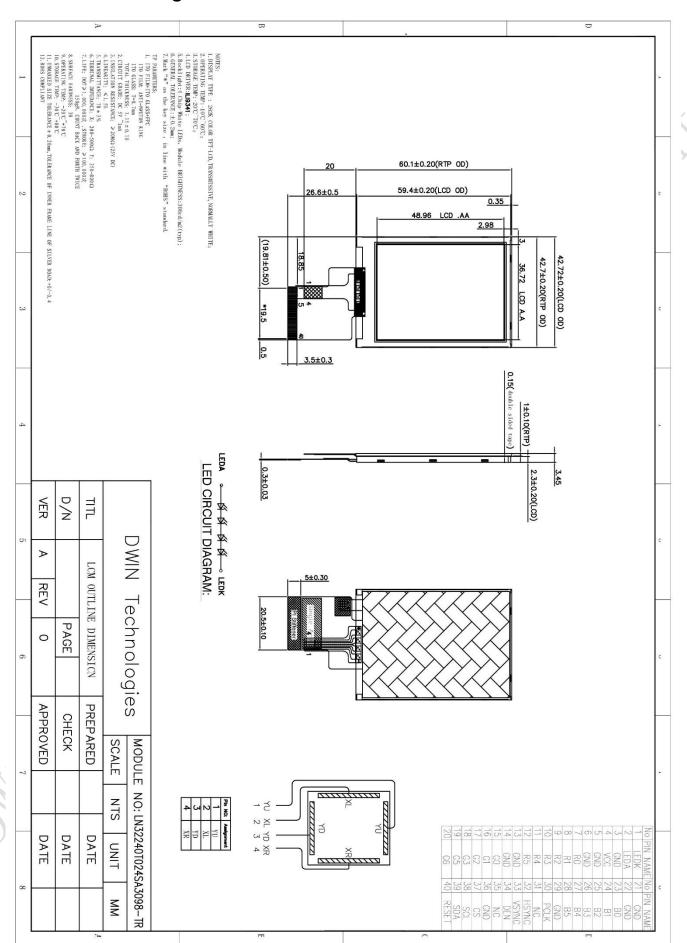
Table of Contents

1 General Feature	3
2 Mechanical Drawing	5
3 Input/Output Terminals	6
4 Electrical Characteristics	
5 Timing Characteristics	8
6 Optical Characteristics	12
7 Environmental Reliability Test	15
8 Packing Capacity & Dimension	16
9 Appearance Inspection	17
10 Precautions for Use of LCD Modules	20
11 Laminated Screen Introduction	21

1 General Feature

1.1 LCD Parameters

1.1 LOD T arai	Feature	Description	Unit
	Size	2.4	inch
	Resolution	240(H)*320(V)	pixels
Display Spec.	Pixel Configuration	RGB stripe	(6)
	Pixel Pitch	0.153(H)*RGB*0.153(V)	mm
	Viewing Direction	6 o'clock	<u> </u>
	Outside Dimension	42.72(W)*60.26(H)*2.30(D)	mm
	Active Area	36.72(W)*48.96(H)	mm
Mechanical Characteristics	Luminance	200	cd/m²
	LED Numbers	4 LEDS	-
	Pin Order	From left to right 40PIN_0.5mm	-
	Interface	RGB_18bit	-
Electrical	Color Depth	262K	colors
Characteristics	Driver Condition	2.8(Type)	V
	LCM Driver IC	ILI9341	-
Temperature	Operating Temp.	-20~70	$^{\circ}$
Range	Storage Temp.	-30~80	$^{\circ}$


1.2 Touch Parameters

Feature	Description
Туре	RTP (Resistive touch panel)
Structure	ITO Film+ ITO Glass+ FPC
Outline Size(mm)	42.70(L)*60.10(W)*1.20(T)
Active Area(mm)	37.32(L)*49.56(W)
Life	Dot >1,000,000; Stroke >100,000
Surface Hardness	3Н
Light Transmittance	78%±3%
Operating Temperature	-20~70℃
Storage Temperature	-30~80℃

Note: Requirements on Environmental Protection: RoHS

DWIN Technology 4 www.dwin-global.com

2 Mechanical Drawing

3 Input/Output Terminals

3.1 LCD Input/Output Terminals

Pin NO.	Symbol	Function	Remark
1	LEDK	Back light cathode	
2	LEDA	Back light anode	>
3	GND	Ground	~
4	VCC	Power supply	
5-6	GND	Ground	
7-12	R0-R5	Data bus	
13-14	GND	Ground	
15-20	G0-G5	Data bus	
21-22	GND	Ground	
23-28	B0-B5	Data bus	
29	GND	Ground	
30	PCLK	Clock signal	
31	NC	Not connect	
32	HSYNC	Line synchronizing signal	
33	VSYNC	Frame synchronizing signal	
34	DEN	Data ENABLE signal	
35	NC	Not connect	
36	GND	Ground	
37	CS	A Chip Select signal	
38	SCL	Serial clock input for SPI interface	
39	SDA 🔨	Serial data input/output bidirectional pin for SPI interface	
40	RESET	Reset Signal pin	

3.2 TP Input/Output Terminals

Pin NO.	Logic	Remark
1	YU	
2	XL	
3	YD	
4	XR	

DWIN Technology 6 www.dwin-global.com

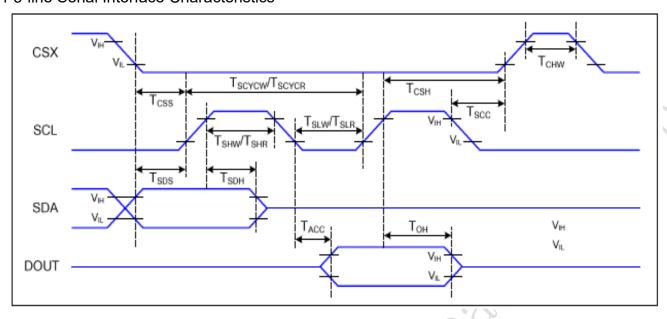
4 Electrical Characteristics

4.1 Driving TFT LCD Panel

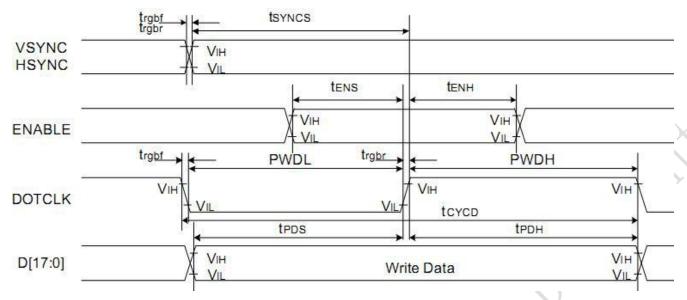
Item	Symbol	Min.	Тур.	Max.	Unit	Remark
Analog Voltage	VCC	2.6	2.8	3.3	V	
Input Logic High Voltage	VIH	0.7VCC	-	VCC	V	X
Input Logic Low Voltage	VIL	GND	-	0.3VCC	V	V6),
Output Logic High Voltage	VOH	0.8VCC	-	VCC	V	
Output Logic Low voltage	VOL	GND	-	0.2VCC	W	

4.2 LED Backlight Specification

4.2 ELB Backlight Openincation							
Item	Symbol	Min.	Тур.	Max.	Unit	Remark	
Forward Voltage	VF	11.2	12.8	13.2	V		
Forward Current	IF	-	20	-	mA		
Luminance	Lv	-	200	-	cd/m²	If=20mA	
Power Consumption	PLED		256	-	mW		
Uniformity(with L/G)	Avg	75	80	-	%		
LED Life Time	Hr	50,-	30000	-	Hour		

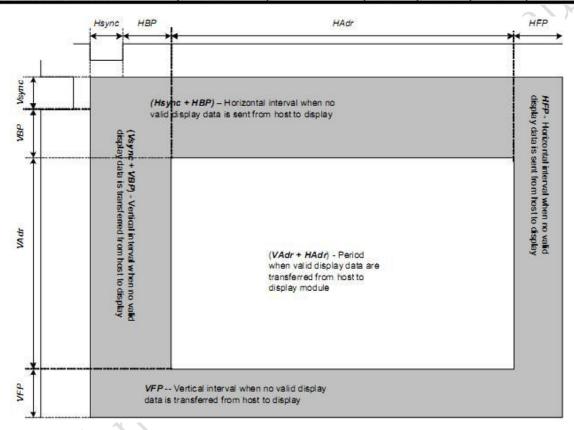

Note: The LED Supply Voltage is defined by the number of LED at Ta=25 $^{\circ}$ C, and IL=20mA/LED. Note: The "LED life time" is defined as the module luminance decrease to 50% original brightness at Ta=25 $^{\circ}$ C and IL=20mA/LED. The LED lifetime could be decreased if operating IL is large than 20mA/LED.

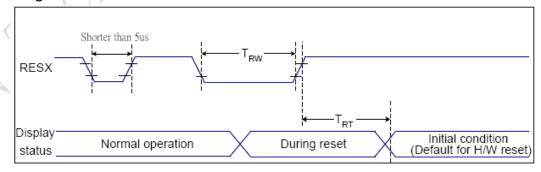
DWIN Technology 7 www.dwin-global.com


5 Timing Characteristics

5.1 3-line Serial Interface Characteristics

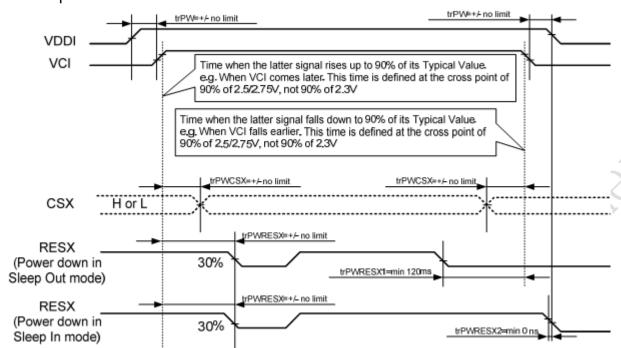
Signal	Symbol	Parameter	min	max	Unit
	tscycw	Serial Clock Cycle (Write)	100	-	ns
	tshw	SCL "H" Pulse Width (Write)	40	-	ns
001	tslw	SCL "L" Pulse Width (Write)	40	-	ns
SCL	tscycr	Serial Clock Cycle (Read)	150	-	ns
	tshr	SCL "H" Pulse Width (Read)	60		ns
tslr	tslr	SCL "L" Pulse Width (Read)	60	-	ns
SDA / SDI	tsds	Data setup time (Write)	30	-	ns
(Input) tsdh	tsdh	Data hold time (Write)	30	-	ns
SDA / SDO	tacc	Access time (Read)	10		ns
(Output)	toh	Output disable time (Read)	10	50	ns
	tscc	SCL-CSX	20	-	ns
COV	tchw	CSX "H" Pulse Width	40	-	ns
CSX	tcss	COV COL Time	60	-	ns
	tcsh	CSX-SCL Time	65	-	ns


5.2 RGB Interface Characteristics

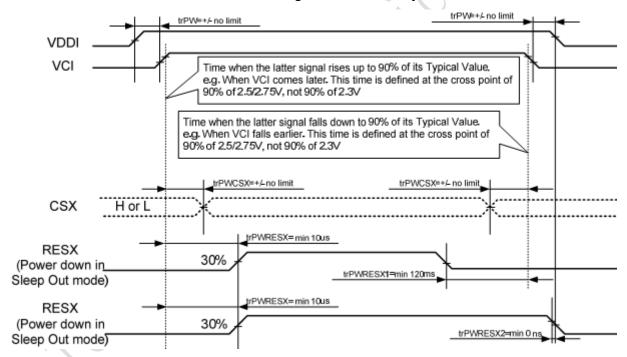

Signal	Symbol	Parameter	min	max	Unit
VSYNC /	tsyncs	VSYNC/HSYNC setup time	15	2	ns
HSYNC	tsynch	VSYNC/HSYNC hold time	15	-	ns
C E	tens	DE setup time	15	:-	ns
DE	tenh	DE hold time	15		ns
D(17:0)	tpos	Data setup time	15		ns
D[17:0]	t _{PDH}	Data hold time	15	-	ns
	PWDH	DOTCLK high-level period	15	. <u>3</u>	ns
DOTCLK	PWDL	DOTCLK low-level period	15		ns
DUTCER	tcycp	DOTCLK cycle time	100	19-	ns
	trabr , trabf	DOTCLK, HSYNC, VSYNC rise/fall time		15	ns

5.3 RGB Interface Definition

Parameters	Symbols	Condition	Min.	Тур.	Max.	Units
Horizontal Synchronization	Hsync		2	10	16	DOTCLK
Horizontal Back Porch	HBP		2	20	24	DOTCLK
Horizontal Address	HAdr		-	240		DOTCLK
Horizontal Front Porch	HFP		2	10	16	DOTCLK
Vertical Synchronization	Vsync		1	2	4	Line
Vertical Back Porch	VBP	© 	1	2		Line
Vertical Address	VAdr			320	130	Line
Vertical Front Porch	VFP		3	4		Line



5.4 Reset Timing



Related Pins	Symbol	Parameter	MIN	MAX	Unit
RESX TRI	TRW	Reset pulse duration	10	7.1	us
			(91)	5	ms
	IKI	Reset cancel		120	ms

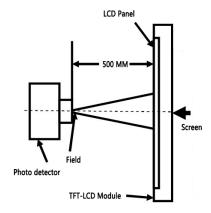
5.5 Power Sequence

Case 1 - RESX line is held High or Unstable by Host at Power ON

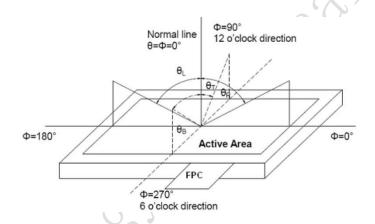
Case 2 - RESX line is held Low by Host at Power ON

DWIN Technology 11 www.dwin-global.com

6 Optical Characteristics


Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
	Тор		-	45	-		
Missain v Annis	Bottom		-	20	-	Dan	Nata 0.0
Viewing Angle	Left	CR≧10	-	45	-	Deg.	Note 2,3
	Right		-	45	-		
Contrast Ratio	CR	θ=0°		250	-	9	Note 3
Response Time	T _r +T _f	θ=0°	-	30		ms	
	Wx		0.288	0.308	0.328		
	Wy		0.305	0.325	0.345		
	Rx		0.592	0.612	0.632		
Color Chromaticity	Ry	0.0%	0.309	0.329	0.349		No. 4.5
(CIE1931)	Gx	θ=0°	0.279	0.299	0.319		Note 1,5
	Gy	63	0.547	0.567	0.587		
	Вх		0.124	0.144	0.164		
	Ву		0.090	0.110	0.130		
Transmittance	Trans	θ=0°	4.5	5.0	-	%	

Test conditions:


IF= 20 mA, and the ambient temperature is 25° C.

Note 1: Definition of optical measurement system.

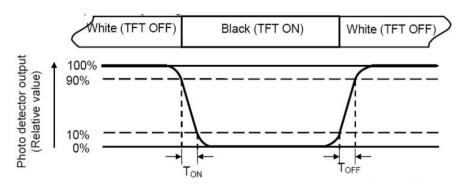
The optical characteristics should be measured in dark room. After 5 minutes operation, the optical properties are measured at the center point of LCD.

Note 2: Definition of viewing angle range and measurement system. The viewing angle is measured at the center point of the LCD by BM-7A.

Note 3: Definition of contrast ratio.

Contrast ratio (CR) = Luminance measured when LCD is on the "White" state Luminance measured when LCD is on the "Black" state

"White state ": The state is that the LCD should drive by Vwhite.

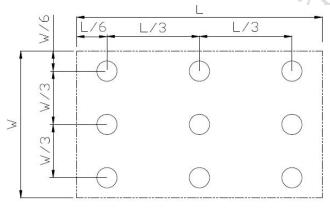

"Black state": The state is that the LCD should drive by Vblack.

Vwhite: To be determined Vblack: To be determined.

Note 4: Definition of response time.

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Time ON (TON) is the time between photo detector output intensity changed from 90% to 10%. And time off (TOFF) is the time between photo detector output intensity changed from 10% to 90%.

DWIN Technology 13 www.dwin-global.com


Note 5: Definition of color chromaticity (CIE1931). Color coordinates measured at center point of LCD.

Note 6: Definition of luminance uniformity

Active area is divided into 9 measuring areas (Refer Fig. 2). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (U) = Lmin/Lmax

L-----Active area length W---- Active area width

Lmax: The measured Maximum luminance of all measurement position. Lmin: The measured Minimum luminance of all measurement position.

Note 7: Definition of luminance.

Measure the luminance of white state at center point.

DWIN Technology 14 www.dwin-global.com

7 Environmental Reliability Test

NO	Test Item	Condition	Remarks
1	High Temperature Operation	Ta=+70℃,48hours	IEC60068-2-1:2007
'		la-+70 C,401louis	GB2423.2-2008
2	Low Temperature Operation	To- 20°C 49houre	IEC60068-2-1:2007
		Ta=-20℃,48hours	GB2423.1-2008
3	High Temperature Storage	Ta=+80°C,48hours	IEC60068-2-1:2007
			GB2423.2-2008
4	Low Temperature Storage	Ta=-30℃,48hours	IEC60068-2-1:2007
			GB2423.1-2008
5	Storage at High Temperature and Humidity	Ta=+40℃,90% RH max,48hours	IEC60068-2-78 :2001
			GB/T2423.3-2006
6	Thermal Shock (non-operation)	-20℃ /30min +70℃/30min, Change time:5min,10cycles	Start with cold
			temperature,
			End with high
			temperature,
		• 0	IEC60068-2-14:1984,
			GB 2423.22-2002

8 Packing Capacity & Dimension

Dimension							
Dimension(mm)	42.72(W)*60.10(H)*3.45(D)						
Net Weight	-						
Packing Capacity							
Size	LCD Size and Resolution	Layer	Quantity (Pcs)				
220mm(L)x160mm(W)x47mm(H)	2.4 inch 240*320	1	1				
600mm(L)x450mm(W)x300mm(H)	2.4 inch 240*320	2	240				

Packing instruction:

The LCD+TP is placed in the grid, covered with a PE static bag and compactly assembled, the upper and the lower layers of the grid are protected by buffer spaces.

The LCD covered with a PE static bag and compactly assembled

placed in the grid

The upper and the lower layers of the grid are protected by buffer spaces

Packed

9 Appearance Inspection

9.1 General rules for inspection

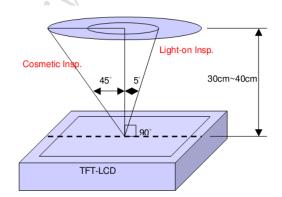
- 9.1.1 Anti-static wearables (anti-static wristbands, gloves) must be worn during the inspection.
- 9.1.2 Do not use bare hands to touch the position of the device, golden fingers, and the surface of the screen to prevent the sweat from human hands from causing oxidation and affecting the appearance.
- 9.1.3 It is forbidden to stack products out of specification and handle them with care to avoid damage to components.
- 9.1.4 The repaired products need to be inspected to prevent rosin and tin slag from exceeding the specifications.
- 9.1.5 When technical documents and process documents have specific requirements for products, the technical documents and process documents shall be the main requirements.

9.2 Inspection conditions

9.2.1 The conditions of display function check

Angle: ±5°;

Inspection method: visual inspection. The inspection object is 30-40cm away from the light source, and the eye is 30-40cm away from the inspection object;


Illumination: 300-500Lux; Inspection time: 5-10S.

9.2.2 Visual inspection conditions

Angle: ±45°;

Inspection method: visual inspection. The inspection object is 30-40cm away from the light source, and the eye is 30-40cm away from the inspection object;

Illumination: 800-1500Lux; Inspection time: 5-10S.

9.3 Inspection standard

Туре	Test Items	Judgement Standard	Defect Category
	Dead pixels	No dead pixels	
Display state	mura	From different angles, the brightness is required to be uniform. Under the 64-level grayscale or pure black interface, there should be no uneven display brightness within the viewing angle range of 45° through 6% ND FILTER. Y series (TV film) LCD screen does not have specific requirements, and the picture inspection does not affect the display as qualified. Uneven brightness Black and white mottled	Slight defect
	Light leakage	Under the 64-level grayscale or pure black interface, there should be no obvious light leakage within the viewing angle range of 45° by visual inspection or through 6% ND FILTER. Y series (TV LCD screen) series can be without obvious visual defects.	Slight defect
	Linear foreign bodies	 1. W≤0.05, L≤2mm, negligible; 2. 0.05mm<w≤0.1mm, li="" l≤2mm,="" n≤3;<=""> 3. W>0.1mm, L>2mm, not allowed. </w≤0.1mm,>	Slight defect
	Bubble in OCA	1. D<0.20mm, negligible; 2. 0.20mm <d≤0.30mm, and,="" ds="" n≤4="">10mm; 3. 0.30mm<d≤0.35mm, and,="" ds="" n≤3="">10mm; 4. 0.35mm<d, (guarantee="" 0.2mm="" area:="" fault.="" outside="" td="" va)<="" within=""><td>Slight defect</td></d,></d≤0.35mm,></d≤0.30mm,>	Slight defect
Screen surface	Within the effective area	Spotted: 1. D≤0.2mm and it is not a piece, it is not counted; 2. 0.2mm <d≤0.5mm, 3.="" d="" n≤3;="">0.5mm, L>0.5mm, W>0.5mm are not allowed; (The spotted foreign objects shall not exceed the point-line gauge D=0.5, and the black dot coverage shall be checked, and the spotted foreign objects shall be judged within the range of D=0.5) Linear: 1. W≤0.05, L≤2mm, ignored; 2. 0.05<w≤0.1mm, 3.="" l≤2mm,="" n≤3;="" w="">0.1mm, L>2mm, not allowed.</w≤0.1mm,></d≤0.5mm,>	Slight defect
	Outside the effective area Foreign objects Scratches Air bubbles	Foreign objects are not checked, and bubbles are not allowed to D>1mm; Non-inductive scratches of no more than 0.1×8mm are allowed.	Slight defect

Professional, Creditable, Successful

10 Precautions for Use of LCD Modules

10.1 Handling Precautions

- 10.1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- 10.1.2 If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
- 10.1.3 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 10.1.4 The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 10.1.5 If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, Can only use LCD dedicated cleaner, the following organic solvent can not be used:
 - Isopropyl alcohol
 - Ethyl alcohol
 - Ketone
 - Aromatic solvents
 - 10.1.6 Do not attempt to disassemble the LCD Module.
 - 10.1.7 If the logic circuit power is off, do not apply the input signals.
 - 10.1.8 To prevent destruction of the elements by static electricity, be careful to maintain an
 - 10.1.9 optimum work environment.
 - 10.1.9.1 Be sure to ground the body when handling the LCD Modules.
 - 10.1.9.2 Tools required for assembly, such as soldering irons, must be properly ground.
- 10.1.9.3 To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
- 10.1.9.4 The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.
- 10.2 Storage precautions
- 10.2.1 When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.
- 10.2.2 The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:
- Temperature: 0°C ~ 40°C Relatively humidity: ≤80%.
- 10.2.3 The LCD modules should be stored in the room without acid, alkali and harmful gas. 10.3 Transportation Precautions
- 10.3.1 The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.

DWIN Technology 20 www.dwin-global.com

11 Laminated Screen Introduction

DWIN adopts original class A glass and the entire production is in the park from cleaning, cutting, bonding, and laminating of large glass to backlight assembly, quality inspection, and aging.

There are 12,000 square meters of clean workshop, with a monthly production capacity of about 2.5 million pieces. Each piece of LCD produced in the factory is for 30 days of aging.

11.1 Laminated screen classification

The laminated screen is mainly composed of cover glass, TP and LCD. The lamination methods can be either frame lamination or full lamination. The frame lamination process fixes TP with the four sides of LCD by 3M adhesive, which is one of the most common lamination methods. Full lamination is to seamlessly bond LCD and TP by optical adhesive. Compared to frame lamination, full lamination features by moisture-proof, dust-proof, high stability, high quality display, and can achieve the visible display under strong light.

11.2 ODM service

DWIN technology has built the Huan DWIN Science Park with a construction area of 250000 square meters (In addition, another 148000 square meters are under construction), integrating industrial chain of LCM, SMT, CTP, RTP, mold injection, and Sheet metal punching. DWIN can guarantee the production of LCM, CTP and RTP with first-class technology, highly automated and intelligent manufacturing equipment.

The production capacity of LCM lines is 2.5 million. The LCM lines support the production of LCM with high luminance(1200 nit), wide operating temperature(-40~85°C), anti-electromagnetic interference, sunlight readability and HDMI interface.

The production capacity of RTP lines is 5 hundred thousand. The RTP lines support the production of customized 4-wire RTP and 5-wire RTP, anti-UV material and AG material.

The production capacity of CTP lines is 1 million. The CTP lines support the production of customized CTP, including 1.3~21.5 inches (unconventional size), circular CTP, the shape, color and logo of cover plate, anti-UV, anti- fingerprint and AG material. They can also support the customization of various kinds of technologies, such as OCA lamination, ultrathin GFF, optical bonding, 2.5D and sunlight readability.

DWIN Technology 21 www.dwin-global.com

SMT lines

RTP lines

LCM lines

Final inspection lines

IQC lines

Laboratories

Record of Revision

Rev	Date	Description	Editor
00	2023-01-16	First Release	Chen
01	2023-05-15	Update Terminals	Chen
02	2023-06-02	Update Luminance	Chen

Please contact us if you have any questions about the use of this document or our products, or if you would like to know the latest information about our products:

Customer service tel: +86 400 018 9008

Customer service email: dwinhmi@dwin.com.cn

DWIN developer forum: https://forums.dwin-global.com/index.php/forums/

Thank you all for continuous support of DWIN, and your approval is the driving force of our progress!