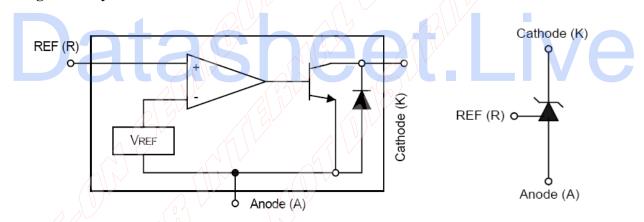


ADJUSTABLE PRECISION SHUNT REGULATOR

FEATURES

• Precision reference voltage :


LT4310 : 2.495V±0.4% LT431N : 2.495V±1.0%

- Adjustable output voltage is VREF to 36V
- · Sink current capability is 200mA
- Low dynamic output impedance is 0.2Ω (typ.)
- Minimum Cathode current for regulation is 0.2mA (tvp.)
- Plastic material has UL flammability classification 94V-0

GENERAL DESCRIPTION

The LT431 is a low voltage three terminal adjustable shunt regulator with a guaranteed thermal stability over applicable temperature ranges. The output voltage can be set to any value between 2.495V (VREF) to 36V with two external resistors (see application circuit). The high precise Reference voltage tolerance is ±0.4% and ±1.0% by LT431. This device has a typical output impedance of 0.2Ω. Active output circuitry provides a very sharp turn on characteristic, making this device excel lent replacement for Zener diodes in many applications.

Block Diagram & Symbol

Absolute Maximum Ratings

(at $T_A=25^{\circ}C$)

Characteristics		Symbol	Rating	Unit
Cathode Voltage	V_{KA}	40	V	
Continuous Cathode Current		I _{KA}	250	mA
Reference Input Current		I _{REF}	10	mA
Junction Temperature	T_J	160	°C	
Storage Temperature	T _{STG}	-40~150	°C	
Power Dissipation (Note1)	TO-92	PD	0.68	W
Fower Dissipation (Note 1)	SOT-23	FD	0.25	W

1

Note1: Ratings apply to ambient temperature at 25°C

Recommended Operating Conditions

Characteristics	Symbol	Min	Max	Unit
Cathode Voltage	V_{KA}	V _{REF}	36	V
Cathode Current	I _{KA}	0.5	200	mA
Operating Temperature (Operating free-air temperature)	T _A	-20	85	°C

Electrical Characteristics

(T_A=25°C, unless otherwise specified)

Characteristics	Symbol	Con	ditions		Min	Тур	Max	Unit
Reference Voltage	V _{REF}	V _{KA} = V _{REF} , I _{KA} = 10mA (Fig.1)		0.4 %	2.485	2.495	2.505	.505 V
				1.0 %	2.470		2.520	
Deviation of Reference Input Voltage over full temperature range	V _{REF(DEV)}	$V_{KA} = V_{REF}, I_{KA}$ $T_A = -20 \sim 85^{\circ}C$				6.0	20	mV
Reference Input Current	I _{RÉF}	R1 = 10KΩ,R2 (Fig.2)	=∞ I _{KA} = ′	10mA		1.5	3.5	uA
Deviation of Reference Input Current over Temperature	I _{REF(DEV)}	R1 = $10K\Omega$, R2 = ∞ I _{KA} = $10mA$ T _A = $-20\sim85$ °C (Fig.2)			0.4	1.2	uA	
Ratio of the Change in Reference V_{KA} = 10V $\sim V_{REF}$ 1.2 -2.0	ΔV_{REF} ΔV_{KA}	I _{KA} = 10mA	V _{KA} = 1	0V ~V _{REF}		-1.2	-2.0	mV/V
Voltage to the Change in Cathode Voltage		(Fig.2)	V _{KA} = 36	6V ~10V		-1	-2.0	
Minimum Cathode Current for Regulation	I _{KA(min)}	V _{KA} = V _{REF} (Fig.1)			0.2	0.5	mA	
Off-state Cathode Current	I _{KA(OFF)}	$V_{KA} = 36V, V_{REF} = 0V (Fig.3)$			0.1	1	uA	
Dynamic Output Impedance	Z _{KA}	V _{KA} = V _{REF} Frequency ≤ 1KHz (Fig.1)			0.2	0.5	Ω	

Application Circuit

Fig1: V_{KA}=V_{REF}

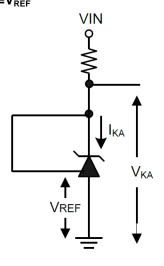
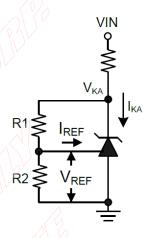
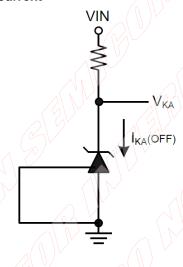
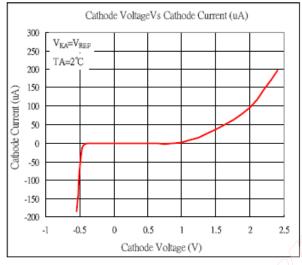
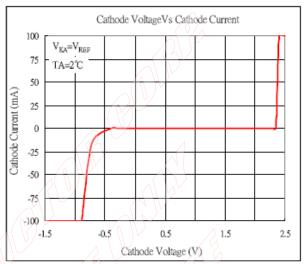
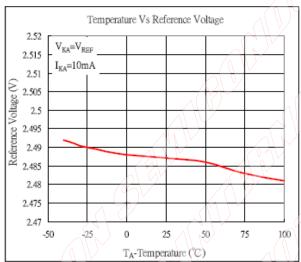
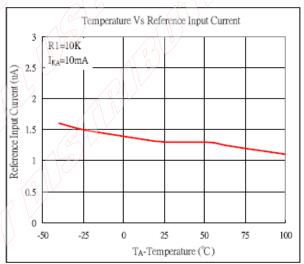




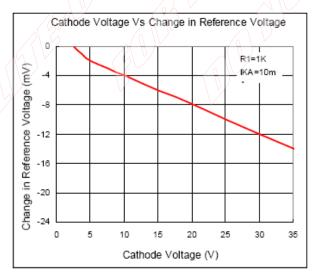
Fig2: V_{KA}>V_{REF}

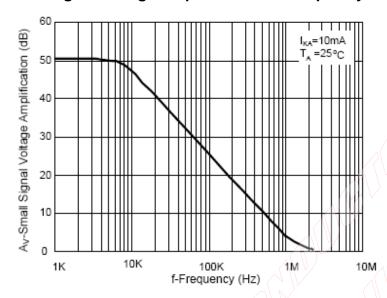


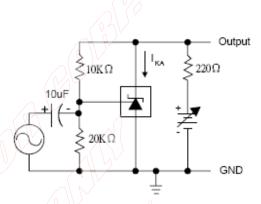

VKA=V_{REF}(1+R1/R2)+I_{REF}*R1


Fig3: Off state current

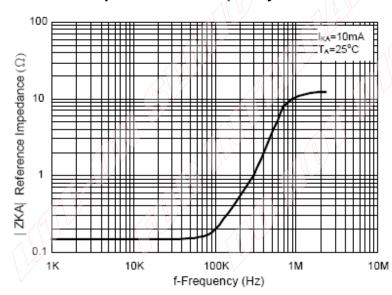


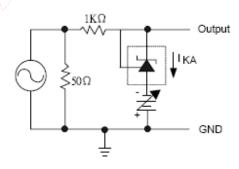

Typical Characteristics





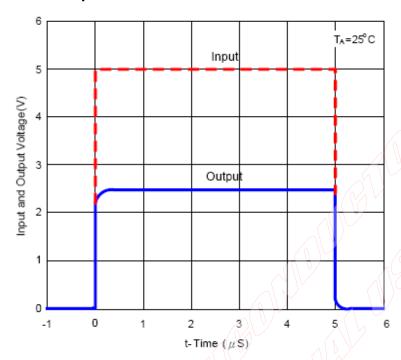
Typical Characteristics (Continued)

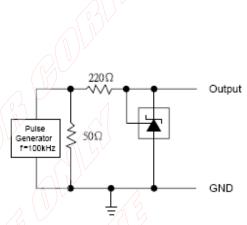

(1) Small Signal Voltage Amplification Vs Frequency



TEST CIRCUIT FOR VOLTAGE AMPLIFICATION

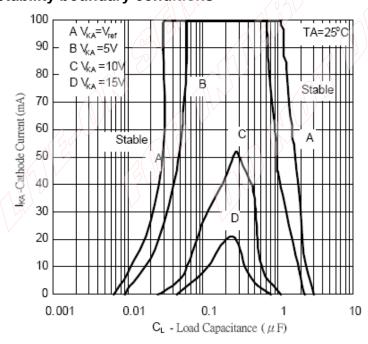
(2) Reference Impedance VS Frequency

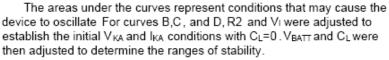


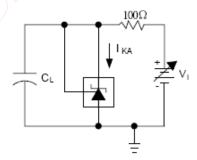


TEST CIRCUIT FOR REFERENCE IMPEDANCE

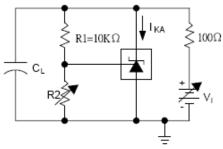
Typical Characteristics (Continued)

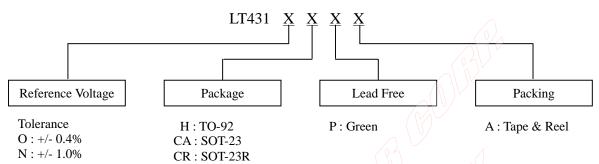

(3) Pulse Response



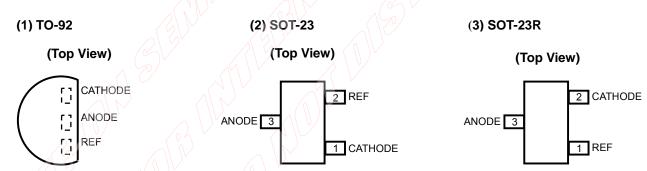


TEST CIRCUIT FOR PULSE RESPONSE


(4) Stability boundary conditions



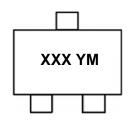
TEST CIRCUIT FOR CURVE A


TEST CIRCUIT FOR CURVE B, C, AND D

Ordering Information

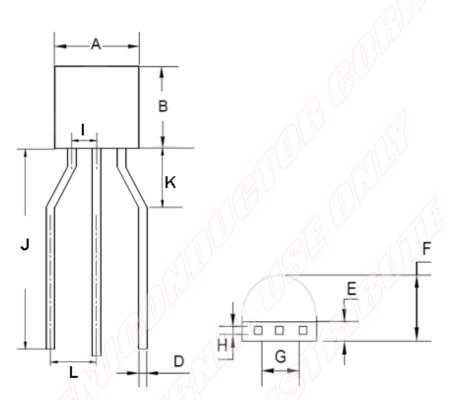
Product Number	Output Voltage Tolerance	Package	Lead Free	Packing
LT431OHPA	0.4 %	TO-92	Green	Taping & Reel
LT431NHPA	1.0 %	TO-92	Green	Taping & Reel
LT4310CAPA	0.4 %	SOT-23	Green	Taping & Reel
LT431NCAPA	1.0 %	SOT-23	Green	Taping & Reel
LT4310CRPA	0.4 %	SOT-23R	Green	Taping & Reel
LT431NCRPA	1.0 %	SOT-23R	Green	Taping & Reel

Pin Assignment



Marking Information

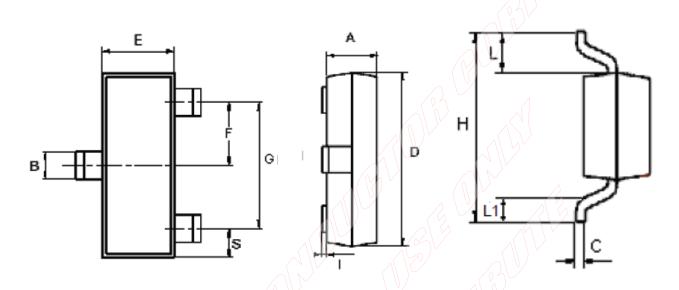
- 1) YM = Date Code, Y: Year, M: Month
- 2) 431<u>xxx</u> = Product Number LT4310HPA: 431<u>0HP</u> LT431NHPA: 431<u>NHP</u>



- 1) YM = Date Code, Y: Year, M: Month
- 2) xxx = Product Number LT431OCAPA: OCA LT431NCAPA: NCA LT431OCRPA: OCR LT431NCRPA: NCR

Mechanical Information

(1) Package type: TO-92


Unit: mm

DIM.	MIN.	MAX.	
A	4.30	4.70	
В	4.30	4.70	
D	0.38	0.55	
E	1.10	1.40	
F	3.30	3.70	
G	2.44	2.64	
Н	0.36	0.51	
I	1.27 TYP.		
J	13.00	14.00	
K	3.50	4.50	
L	2.20	2.80	

Mechanical Information (Continued)

(1) Package type: SOT-23 & SOT-23R

Unit: mm

		Cint. IIIII
DIM.	MIN.	MAX.
A	0.89	1.15
B	0.3.	0.51
C	0.08	0.18
D	2.75	3.04
E	1.2	1.4
F(\)	0.95	TYP.
G	1.70	2.10
Н	2.10	2.75
I	0.0	0.1
L	0.55	Typ.
L1	0.30	0.50

Important Notice and Disclaimer

LSC reserves the right to make changes to this document and its products and specifications at any time without notice. Customers should obtain and confirm the latest product information and specifications before final design, purchase or use.

LSC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does LSC assume any liability for application assistance or customer product design. LSC does not warrant or accept any liability with products which are purchased or used for any unintended or unauthorized application.

No license is granted by implication or otherwise under any intellectual property rights of LSC.

LSC products are not authorized for use as critical components in life support devices or systems without express written approval of LSC.

