Technical Datasheet Input / Output Modules with Modbus RTU Protocol with RS485 Interface

The IO modules communicate via RS485. The port can drive distances up to max 700 meters without the use of any repeater (this feature however also depends on the signal strength of the Modbus Master Device).
The RS485 Digital IO module is sturdy, low power usage and easy to use.
4 Port DO + 4 DI + 4 AI Module: -

The IO modules are mounted on DIN rail mountable casing and with exposed connectors and LED indicators. The DIP switch for Slave ID and Baud rate are placed inside the enclosure.

The design of the modules incorporates 'resettable Fuses' to safeguard against reverse polarity connection both for Power and Communication port.

Specifications

General -

I/O Connectors

Dimensions
Power

12 Pin 5.08 mm pitch pluggable screw Terminal Block, 2 Pin 5.08 mm pitch pluggable screw terminals.
$110 \mathrm{~mm} \mathrm{~L} \times 110 \mathrm{~mm}$ B x 50 mm H
Input Power-12-24 VDC or 24 V AC/DC
Typical-12V DC @ 120mA
$0-60^{\circ} \mathrm{C}\left(32 \sim^{\sim} 140^{\circ} \mathrm{F}\right)$
$-20-70^{\circ} \mathrm{C}\left(-4 \sim 158^{\circ} \mathrm{F}\right)$

Storage Humidity
 5 ~ 95 \% RH, non - Condensing

Certifications

DO with Relay Output -

Channels
Contact Form
Contact Material
Contact Capacity
Coil Voltage
Coil Power
Insulation Resistance
Electrical Life
Mechanical Life
Operating Time
Release Time

DI Inputs -

Channels 4
Sense Voltage
Sense Logic
Isolation
Response Time

Al Inputs -

Channels	4
Input Signal	$4-20 \mathrm{~mA} / 0-20 \mathrm{~mA} / 0-5 \mathrm{VDC} / 0-10 \mathrm{VDC}$ (jumper)
Accuracy	$\pm 2 \%$ Full scale
Input Resolution	10 bits $/ 12$ bits options
Isolation	Optically Isolated
External Loop Voltage	+12 VDC min
Al input impedance	120Ω

Additional Features: -

All inputs and communication ports isolated
Input power reverse polarity safety
ESD Safety IEC 61000-4-2, $\pm 30 \mathrm{KV}$ contact, $\pm 30 \mathrm{KV}$ air
EFT IEC 61000-4-4, 50A ($5 / 50 \mathrm{~ms}$)
750 V isolation.
CRC Error check.
No configuration needed on the IO board

Configuration Settings: -

Communication Speed 9600-115200 (DIP SW selectable)

Data Bits
Parity
Stop bit
CRC
Slave ID
Function code DO
DO Register Address
Function code DI
DI Register Address
Function Code AI
Al Register Address

8
None
1
Yes
Configurable with DIP Switch
0×05 and $0 \times 0 \mathrm{~F}$ (5 Single coil \& 15 multiple coil)
4,5,6,7.
0×02 Read discrete Input
0,1,2,3.
0x03 Read Holding Registers
10 Bit - 2,3,4,5 / 12 Bit - 6,7,8,9.

ID	Function Description	Register Description	Modbus Function Code	Protocol	Data Type
1	DO 1	00004	$0 \times 05,0 \times 0 F$	RS485	1 Bit Boolean
2	DO 2	00005	$0 \times 05,0 \times 0 F$	RS485	1 Bit Boolean
3	DO 3	00006	$0 \times 05,0 \times 0 F$	RS485	1 Bit Boolean
4	DO 4	00007	$0 \times 05,0 \times 0 F$	RS485	1 Bit Boolean
5	DI 1(With \& Without Potential)	10001	0×02	RS485	1 Bit Boolean
6	DI 2(With \& Without Potential)	10002	0×02	RS485	1 Bit Boolean
7	DI 3(With \& Without Potential)	10003	0×02	RS485	1 Bit Boolean
8	DI 4(With \& Without Potential)	10004	0×02	RS485	1 Bit Boolean
9	AI 1-10 Bit	40002	0×03	RS485	16 Bit Unsigned int
10	Al 2 - 10 Bit	40003	0×03	RS485	16 Bit Unsigned int

	WIN - IO-4DDAM CE				
11	Al 3-10 Bit	40004	0X03	RS485	16 Bit Unsigned int
12	Al 4-10 Bit	40005	0X03	RS485	16 Bit Unsigned int
13	AI-112 Bit	40006	0x03	RS485	16 Bit Unsigned int
14	AI-212 Bit	40007	0x03	RS485	16 Bit Unsigned int
15	AI-312 Bit	40008	0x03	RS485	16 Bit Unsigned int
16	AI-412 Bit	40009	0x03	RS485	16 Bit Unsigned int

Note: -

For MODBUS communications, a shielded and twisted pair cable is used. One example of such cable is Belden 3105A.

Recommended Cable Electrical Characteristics: -

22 AWG Cable	Shielded and twisted pair should be used.
Tinned Copper	Recommended
Nominal Conductor DCR 14.7 ohm / 1000 ft	
Nominal Capacitance $\quad 11 \mathrm{pf} /$ feet (conductor to conductor)	
High Frequency Non-Insertion Loss $\quad 0.5 \mathrm{db} / 100 \mathrm{ft}$	

Connection Instruction FOR WIN - IO - 4DDAM CE

- For Digital Input Potential Free Contact Detection 12V \& + terminals should be connected to the WIN - IO - 4DDAM - CE Module DI Pins.

- For Digital Input with Potential (3V to 30V) Contact + \& - terminals should be connected to WIN - IO 4DDAM - CE Module DI Pins.

- For Al there are 4 Jumpers Eg. Jumper "H3", "H6", "H1" \& " H 2 " are for Selecting the Input Voltage Detection.
- + \& - Terminal are used for all AI INPUT

Jumper Selection for Voltage INPUT

- For +5 V Detection +5 V and Middle Jumper H3(as BLUE marker in Image) should be selected as mentioned in AI3 in the Image \& parallel for all AI Channels as needed.
- For $\mathbf{+ 1 0 V}$ Detection +10 V and Middle Jumper (as RED marker in Image) should be selected as mentioned in AI3 in the Image \& parallel for all AI Channels as needed.

Jumper Selection For 4-20mA \& 0-20 mA Current Detection

- For $\mathbf{4 - 2 0 m A} \& 0-20 \mathrm{~mA}$ Detection $\mathbf{+ 5 V}$ and Middle (as

BLUE marker in Image) as Jumper J5 should be selected as mentioned in AI3 in the Image \& parallel for all AI Channels as needed.
Jumper Selection for Bit resolution (Current \& Voltage)

- For 10 Bit Resolution, 10 Bit \& Middle as Jumper J3(as green marker in Image) should be selected as mentioned in AI1 in the Image \& parallel for all AI Channels as needed.
- For 12 Bit Resolution, 12 Bit \& Middle as Jumper J3 (as Purple marker in Image) should be selected as mentioned in Al1 in the Image \& parallel for all AI Channels as needed.

SLAVE ID DESCRIPTION

For Slave ID Selection SW is used to Set The SLAVE ID .
For Slave ID DIP Switch LSB is " 1 " follow through " 4 " is MSB.
Slave ID Confirmed through below Device ID table .

IF Eg. Slave ID 1 is Needed to be selected Switch number 1 should pulled up other three should be selected down side. So"1000" will be selected as Slave ID 1.

Slave ID	DIP SWITCH				OUTPUT (Binary)	OUTPUT (Decimal)
	1	2	3	4		
0	OFF(0)	OFF(0)	OFF(0)	OFF(0)	0001	1
1	ON(1)	OFF(0)	OFF(0)	OFF(0)	0001	1
2	OFF(0)	ON(1)	OFF(0)	OFF(0)	0010	2
3	ON(1)	ON(1)	OFF(0)	OFF(0)	0011	3
4	OFF(0)	OFF(0)	ON(1)	OFF(0)	0100	4
5	ON(1)	OFF(0)	ON(1)	OFF(0)	0101	5
6	OFF(0)	ON(1)	ON(1)	OFF(0)	0110	6
7	ON(1)	ON(1)	ON(1)	OFF(0)	0111	7
8	OFF(0)	OFF(0)	OFF(0)	ON(1)	1000	8
9	ON(1)	OFF(0)	OFF(0)	ON(1)	1001	9
10	OFF(0)	ON(1)	OFF(0)	ON(1)	1010	10
11	ON(1)	ON(1)	OFF(0)	ON(1)	1011	11
12	OFF(0)	OFF(0)	ON(1)	ON(1)	1100	12
13	ON(1)	OFF(0)	ON(1)	ON(1)	1101	13
14	OFF(0)	ON(1)	ON(1)	ON(1)	1110	14
15	ON(1)	ON(1)	ON(1)	ON(1)	1111	15

Two-wire Sensor Wiring Diagram

Three-wire Sensor Wiring Diagram

Four-wire 4-20mA Sensor

Contact us: -

Augmatic Technologies Pvt. Ltd.,
Plot no 6, Shah Industrial Estate II,
Kotambi,
Vadodara - 391510.
Email - Sales@wittelb.com

