WaveShare Electronics
₹3,184.00 + 18% GST
B2B GST Credit Available
Core3566 Module, Rockchip RK3566 Quad-core Processor, Compatible With Raspberry Pi CM4, 2GB RAM, 32GB eMMC, No Wireless - Core3566002032
₹3,757.12
All Inclusive, Shipping Calculated at Checkout
Assured Cashback of ₹ 32
B2B GST Credit Available
Price in reward points: 3184
- Stock: 0 in Stock
- SKU: 24845
- Delivery Time
- Bulk & B2B RFQ
Core3566 Module, Rockchip RK3566 Quad-core Processor, Compatible With Raspberry Pi CM4, 2GB RAM, 32GB eMMC, No Wireless - Core3566002032
This is a Core3566 Module, Rockchip RK3566 Quad-core Processor, Compatible With Raspberry Pi CM4, 2GB RAM, 32GB eMMC, No Wireless - Core3566002032. The Core 3566 Module Comes With Quad-core Arm Cortex-A55 @1.8GHz Processor With 2GB RAM and 32GB eMMC storage.This item is Not support Wirelss Connectivity.
Note : Image shown is a representation only the acctual image is differ
User Manual / Datasheet / Example Codes Etc.
Package Includes
- Core3566 module x1
Specifications
- Processor : Quad-core Arm Cortex-A55 @1.8GHz
- Memory : 2GB LPDDR4 SDRAM memory
- Storage : 32GB eMMC Flash
- NPU : 0.8 TOPS @INT8
- GPU : Arm Mali-G52 2EE
- Connectivity : No Wireless Connectivity
- Video : HDMI interface (4Kp60 supported) / 2-lane MIPI DSI display interface × 2 / 2-lane MIPI CSI camera interface × 2
- Multimedia : 4Kp60 H.264/H.265/VP9 (decode), 1080p60 H.264/H.265 (encode)
- Operating Voltage : 5V DC
- Operating Temp. : -10°C ~ 80°C ambient
- Dimensions : 55 × 40 × 4.7mm
- Part Number : Core3566002032
Rk3566 Discription
- RK3566 Quad-core 64-bit Cortex-A55 processor, frequency up to 1.8GHz, with 22nm process, features low power consumption and high performance
- Integrated dual-core architecture ARM G52 GPU, high performance VPU and high efficiency NPU
- The GPU supports OpenGL ES3.2/2.0/1.1 and Vulkan1.1
- The VPU can support 4K 60fps H.265/H.264/VP9 video decoding and 1080P 60fps H.265/ H.264 video encoding
- The NPU with computing power of 0.8Tops supports one-click switching of mainstream frameworks like Caffe/TensorFlo
Onboard Resources
Image shown is a representation only